Random#

Random sampling functions in MLX use an implicit global PRNG state by default. However, all function take an optional key keyword argument for when more fine-grained control or explicit state management is needed.

For example, you can generate random numbers with:

for _ in range(3):
  print(mx.random.uniform())

which will print a sequence of unique pseudo random numbers. Alternatively you can explicitly set the key:

key = mx.random.key(0)
for _ in range(3):
  print(mx.random.uniform(key=key))

which will yield the same pseudo random number at each iteration.

Following JAX’s PRNG design we use a splittable version of Threefry, which is a counter-based PRNG.

bernoulli([p, shape, key, stream])

Generate Bernoulli random values.

categorical(logits[, axis, shape, ...])

Sample from a categorical distribution.

gumbel([shape, dtype, stream, key])

Sample from the standard Gumbel distribution.

key(seed)

Get a PRNG key from a seed.

normal([shape, dtype, loc, scale, key, stream])

Generate normally distributed random numbers.

multivariate_normal(mean, cov[, shape, ...])

Generate jointly-normal random samples given a mean and covariance.

randint(low, high[, shape, dtype, key, stream])

Generate random integers from the given interval.

seed(seed)

Seed the global PRNG.

split(key[, num, stream])

Split a PRNG key into sub keys.

truncated_normal(lower, upper[, shape, ...])

Generate values from a truncated normal distribution.

uniform([low, high, shape, dtype, key, stream])

Generate uniformly distributed random numbers.

laplace([shape, dtype, loc, scale, key, stream])

Sample numbers from a Laplace distribution.