mlx.nn.MaxPool1d#
- class MaxPool1d(kernel_size: int | Tuple[int], stride: int | Tuple[int] | None = None, padding: int | Tuple[int] = 0)#
Applies 1-dimensional max pooling.
Assuming an input of shape \((N, L, C)\) and
kernel_size
is \(k\), the output is a tensor of shape \((N, L_{out}, C)\), given by:\[\text{out}(N_i, t, C_j) = \max_{m=0, \ldots, k - 1} \text{input}(N_i, \text{stride} \times t + m, C_j),\]where \(L_{out} = \left\lfloor \frac{L + 2 \times \text{padding} - \text{kernel\_size}}{\text{stride}}\right\rfloor + 1\).
- Parameters:
kernel_size (int or tuple(int)) – The size of the pooling window kernel.
stride (int or tuple(int), optional) – The stride of the pooling window. Default:
kernel_size
.padding (int or tuple(int), optional) – How much negative infinity padding to apply to the input. The padding amount is applied to both sides of the spatial axis. Default:
0
.
Examples
>>> import mlx.core as mx >>> import mlx.nn.layers as nn >>> x = mx.random.normal(shape=(4, 16, 5)) >>> pool = nn.MaxPool1d(kernel_size=2, stride=2) >>> pool(x)
Methods