mlx.nn.MaxPool1d#
- class MaxPool1d(kernel_size: int | Tuple[int], stride: int | Tuple[int] | None = None, padding: int | Tuple[int] = 0)#
Applies 1-dimensional max pooling.
Spatially downsamples the input by taking the maximum of a sliding window of size
kernel_size
and sliding stridestride
.- Parameters:
kernel_size (int or tuple(int)) – The size of the pooling window kernel.
stride (int or tuple(int), optional) – The stride of the pooling window. Default:
kernel_size
.padding (int or tuple(int), optional) – How much negative infinity padding to apply to the input. The padding amount is applied to both sides of the spatial axis. Default:
0
.
Examples
>>> import mlx.core as mx >>> import mlx.nn.layers as nn >>> x = mx.random.normal(shape=(4, 16, 5)) >>> pool = nn.MaxPool1d(kernel_size=2, stride=2) >>> pool(x)
Methods