Custom Extensions in MLX#

You can extend MLX with custom operations on the CPU or GPU. This guide explains how to do that with a simple example.

Introducing the Example#

Let’s say you would like an operation that takes in two arrays, x and y, scales them both by coefficients alpha and beta respectively, and then adds them together to get the result z = alpha * x + beta * y. You can do that in MLX directly:

import mlx.core as mx

def simple_axpby(x: mx.array, y: mx.array, alpha: float, beta: float) -> mx.array:
    return alpha * x + beta * y

This function performs that operation while leaving the implementation and function transformations to MLX.

However you may need to customize the underlying implementation, perhaps to make it faster or for custom differentiation. In this tutorial we will go through adding custom extensions. It will cover:

  • The structure of the MLX library.

  • Implementing a CPU operation that redirects to Accelerate when appropriate.

  • Implementing a GPU operation using metal.

  • Adding the vjp and jvp function transformation.

  • Building a custom extension and binding it to python.

Operations and Primitives#

Operations in MLX build the computation graph. Primitives provide the rules for evaluating and transforming the graph. Let’s start by discussing operations in more detail.

Operations#

Operations are the front-end functions that operate on arrays. They are defined in the C++ API (Operations), and the Python API (Operations) binds them.

We would like an operation, axpby() that takes in two arrays x and y, and two scalars, alpha and beta. This is how to define it in C++:

/**
*  Scale and sum two vectors element-wise
*  z = alpha * x + beta * y
*
*  Follow numpy style broadcasting between x and y
*  Inputs are upcasted to floats if needed
**/
array axpby(
    const array& x, // Input array x
    const array& y, // Input array y
    const float alpha, // Scaling factor for x
    const float beta, // Scaling factor for y
    StreamOrDevice s = {} // Stream on which to schedule the operation
);

The simplest way to this operation is in terms of existing operations:

array axpby(
    const array& x, // Input array x
    const array& y, // Input array y
    const float alpha, // Scaling factor for x
    const float beta, // Scaling factor for y
    StreamOrDevice s /* = {} */ // Stream on which to schedule the operation
) {
    // Scale x and y on the provided stream
    auto ax = multiply(array(alpha), x, s);
    auto by = multiply(array(beta), y, s);

    // Add and return
    return add(ax, by, s);
}

The operations themselves do not contain the implementations that act on the data, nor do they contain the rules of transformations. Rather, they are an easy to use interface that use Primitive building blocks.

Primitives#

A Primitive is part of the computation graph of an array. It defines how to create outputs arrays given a input arrays. Further, a Primitive has methods to run on the CPU or GPU and for function transformations such as vjp and jvp. Lets go back to our example to be more concrete:

class Axpby : public Primitive {
  public:
    explicit Axpby(Stream stream, float alpha, float beta)
        : Primitive(stream), alpha_(alpha), beta_(beta){};

    /**
    * A primitive must know how to evaluate itself on the CPU/GPU
    * for the given inputs and populate the output array.
    *
    * To avoid unnecessary allocations, the evaluation function
    * is responsible for allocating space for the array.
    */
    void eval_cpu(
        const std::vector<array>& inputs,
        std::vector<array>& outputs) override;
    void eval_gpu(
        const std::vector<array>& inputs,
        std::vector<array>& outputs) override;

    /** The Jacobian-vector product. */
    std::vector<array> jvp(
        const std::vector<array>& primals,
        const std::vector<array>& tangents,
        const std::vector<int>& argnums) override;

    /** The vector-Jacobian product. */
    std::vector<array> vjp(
        const std::vector<array>& primals,
        const array& cotan,
        const std::vector<int>& argnums,
        const std::vector<array>& outputs) override;

    /**
    * The primitive must know how to vectorize itself across
    * the given axes. The output is a pair containing the array
    * representing the vectorized computation and the axis which
    * corresponds to the output vectorized dimension.
    */
    virtual std::pair<std::vector<array>, std::vector<int>> vmap(
        const std::vector<array>& inputs,
        const std::vector<int>& axes) override;

    /** Print the primitive. */
    void print(std::ostream& os) override {
        os << "Axpby";
    }

    /** Equivalence check **/
    bool is_equivalent(const Primitive& other) const override;

  private:
    float alpha_;
    float beta_;

    /** Fall back implementation for evaluation on CPU */
    void eval(const std::vector<array>& inputs, array& out);
};

The Axpby class derives from the base Primitive class. The Axpby treats alpha and beta as parameters. It then provides implementations of how the output array is produced given the inputs through Axpby::eval_cpu() and Axpby::eval_gpu(). It also provides rules of transformations in Axpby::jvp(), Axpby::vjp(), and Axpby::vmap().

Using the Primitive#

Operations can use this Primitive to add a new array to the computation graph. An array can be constructed by providing its data type, shape, the Primitive that computes it, and the array inputs that are passed to the primitive.

Let’s reimplement our operation now in terms of our Axpby primitive.

array axpby(
    const array& x, // Input array x
    const array& y, // Input array y
    const float alpha, // Scaling factor for x
    const float beta, // Scaling factor for y
    StreamOrDevice s /* = {} */ // Stream on which to schedule the operation
) {
    // Promote dtypes between x and y as needed
    auto promoted_dtype = promote_types(x.dtype(), y.dtype());

    // Upcast to float32 for non-floating point inputs x and y
    auto out_dtype = is_floating_point(promoted_dtype)
        ? promoted_dtype
        : promote_types(promoted_dtype, float32);

    // Cast x and y up to the determined dtype (on the same stream s)
    auto x_casted = astype(x, out_dtype, s);
    auto y_casted = astype(y, out_dtype, s);

    // Broadcast the shapes of x and y (on the same stream s)
    auto broadcasted_inputs = broadcast_arrays({x_casted, y_casted}, s);
    auto out_shape = broadcasted_inputs[0].shape();

    // Construct the array as the output of the Axpby primitive
    // with the broadcasted and upcasted arrays as inputs
    return array(
        /* const std::vector<int>& shape = */ out_shape,
        /* Dtype dtype = */ out_dtype,
        /* std::unique_ptr<Primitive> primitive = */
        std::make_shared<Axpby>(to_stream(s), alpha, beta),
        /* const std::vector<array>& inputs = */ broadcasted_inputs);
}

This operation now handles the following:

  1. Upcast inputs and resolve the output data type.

  2. Broadcast the inputs and resolve the output shape.

  3. Construct the primitive Axpby using the given stream, alpha, and beta.

  4. Construct the output array using the primitive and the inputs.

Implementing the Primitive#

No computation happens when we call the operation alone. The operation only builds the computation graph. When we evaluate the output array, MLX schedules the execution of the computation graph, and calls Axpby::eval_cpu() or Axpby::eval_gpu() depending on the stream/device specified by the user.

Warning

When Primitive::eval_cpu() or Primitive::eval_gpu() are called, no memory has been allocated for the output array. It falls on the implementation of these functions to allocate memory as needed.

Implementing the CPU Back-end#

Let’s start by implementing a naive and generic version of Axpby::eval_cpu(). We declared this as a private member function of Axpby earlier called Axpby::eval().

Our naive method will go over each element of the output array, find the corresponding input elements of x and y and perform the operation point-wise. This is captured in the templated function axpby_impl().

template <typename T>
void axpby_impl(
        const array& x,
        const array& y,
        array& out,
        float alpha_,
        float beta_) {
    // We only allocate memory when we are ready to fill the output
    // malloc_or_wait synchronously allocates available memory
    // There may be a wait executed here if the allocation is requested
    // under memory-pressured conditions
    out.set_data(allocator::malloc_or_wait(out.nbytes()));

    // Collect input and output data pointers
    const T* x_ptr = x.data<T>();
    const T* y_ptr = y.data<T>();
    T* out_ptr = out.data<T>();

    // Cast alpha and beta to the relevant types
    T alpha = static_cast<T>(alpha_);
    T beta = static_cast<T>(beta_);

    // Do the element-wise operation for each output
    for (size_t out_idx = 0; out_idx < out.size(); out_idx++) {
        // Map linear indices to offsets in x and y
        auto x_offset = elem_to_loc(out_idx, x.shape(), x.strides());
        auto y_offset = elem_to_loc(out_idx, y.shape(), y.strides());

        // We allocate the output to be contiguous and regularly strided
        // (defaults to row major) and hence it doesn't need additional mapping
        out_ptr[out_idx] = alpha * x_ptr[x_offset] + beta * y_ptr[y_offset];
    }
}

Our implementation should work for all incoming floating point arrays. Accordingly, we add dispatches for float32, float16, bfloat16 and complex64. We throw an error if we encounter an unexpected type.

/** Fall back implementation for evaluation on CPU */
void Axpby::eval(
  const std::vector<array>& inputs,
  const std::vector<array>& outputs) {
    auto& x = inputs[0];
    auto& y = inputs[1];
    auto& out = outputs[0];

    // Dispatch to the correct dtype
    if (out.dtype() == float32) {
        return axpby_impl<float>(x, y, out, alpha_, beta_);
    } else if (out.dtype() == float16) {
        return axpby_impl<float16_t>(x, y, out, alpha_, beta_);
    } else if (out.dtype() == bfloat16) {
        return axpby_impl<bfloat16_t>(x, y, out, alpha_, beta_);
    } else if (out.dtype() == complex64) {
        return axpby_impl<complex64_t>(x, y, out, alpha_, beta_);
    } else {
        throw std::runtime_error(
            "[Axpby] Only supports floating point types.");
    }
}

This is good as a fallback implementation. We can use the axpby routine provided by the Accelerate framework for a faster implementation in certain cases:

  1. Accelerate does not provide implementations of axpby for half precision floats. We can only use it for float32 types.

  2. Accelerate assumes the inputs x and y are contiguous and all elements have fixed strides between them. We only direct to Accelerate if both x and y are row contiguous or column contiguous.

  3. Accelerate performs the routine Y = (alpha * X) + (beta * Y) in-place. MLX expects to write the output to a new array. We must copy the elements of y into the output and use that as an input to axpby.

Let’s write an implementation that uses Accelerate in the right conditions. It allocates data for the output, copies y into it, and then calls the catlas_saxpby() from accelerate.

template <typename T>
void axpby_impl_accelerate(
        const array& x,
        const array& y,
        array& out,
        float alpha_,
        float beta_) {
    // Accelerate library provides catlas_saxpby which does
    // Y = (alpha * X) + (beta * Y) in place
    // To use it, we first copy the data in y over to the output array
    out.set_data(allocator::malloc_or_wait(out.nbytes()));

    // We then copy over the elements using the contiguous vector specialization
    copy_inplace(y, out, CopyType::Vector);

    // Get x and y pointers for catlas_saxpby
    const T* x_ptr = x.data<T>();
    T* y_ptr = out.data<T>();

    T alpha = static_cast<T>(alpha_);
    T beta = static_cast<T>(beta_);

    // Call the inplace accelerate operator
    catlas_saxpby(
        /* N = */ out.size(),
        /* ALPHA = */ alpha,
        /* X = */ x_ptr,
        /* INCX = */ 1,
        /* BETA = */ beta,
        /* Y = */ y_ptr,
        /* INCY = */ 1);
}

For inputs that do not fit the criteria for accelerate, we fall back to Axpby::eval(). With this in mind, let’s finish our Axpby::eval_cpu().

/** Evaluate primitive on CPU using accelerate specializations */
void Axpby::eval_cpu(
  const std::vector<array>& inputs,
  const std::vector<array>& outputs) {
    assert(inputs.size() == 2);
    auto& x = inputs[0];
    auto& y = inputs[1];
    auto& out = outputs[0];

    // Accelerate specialization for contiguous single precision float arrays
    if (out.dtype() == float32 &&
        ((x.flags().row_contiguous && y.flags().row_contiguous) ||
        (x.flags().col_contiguous && y.flags().col_contiguous))) {
        axpby_impl_accelerate<float>(x, y, out, alpha_, beta_);
        return;
    }

    // Fall back to common back-end if specializations are not available
    eval(inputs, outputs);
}

Just this much is enough to run the operation axpby() on a CPU stream! If you do not plan on running the operation on the GPU or using transforms on computation graphs that contain Axpby, you can stop implementing the primitive here and enjoy the speed-ups you get from the Accelerate library.

Implementing the GPU Back-end#

Apple silicon devices address their GPUs using the Metal shading language, and GPU kernels in MLX are written using Metal.

Note

Here are some helpful resources if you are new to Metal:

Let’s keep the GPU kernel simple. We will launch exactly as many threads as there are elements in the output. Each thread will pick the element it needs from x and y, do the point-wise operation, and update its assigned element in the output.

template <typename T>
[[kernel]] void axpby_general(
        device const T* x [[buffer(0)]],
        device const T* y [[buffer(1)]],
        device T* out [[buffer(2)]],
        constant const float& alpha [[buffer(3)]],
        constant const float& beta [[buffer(4)]],
        constant const int* shape [[buffer(5)]],
        constant const int64_t* x_strides [[buffer(6)]],
        constant const int64_t* y_strides [[buffer(7)]],
        constant const int& ndim [[buffer(8)]],
        uint index [[thread_position_in_grid]]) {
    // Convert linear indices to offsets in array
    auto x_offset = elem_to_loc(index, shape, x_strides, ndim);
    auto y_offset = elem_to_loc(index, shape, y_strides, ndim);

    // Do the operation and update the output
    out[index] =
        static_cast<T>(alpha) * x[x_offset] + static_cast<T>(beta) * y[y_offset];
}

We then need to instantiate this template for all floating point types and give each instantiation a unique host name so we can identify it.

instantiate_kernel("axpby_general_float32", axpby_general, float)
instantiate_kernel("axpby_general_float16", axpby_general, float16_t)
instantiate_kernel("axpby_general_bfloat16", axpby_general, bfloat16_t)
instantiate_kernel("axpby_general_complex64", axpby_general, complex64_t)

The logic to determine the kernel, set the inputs, resolve the grid dimensions, and dispatch to the GPU are contained in Axpby::eval_gpu() as shown below.

/** Evaluate primitive on GPU */
void Axpby::eval_gpu(
  const std::vector<array>& inputs,
  std::vector<array>& outputs) {
    // Prepare inputs
    assert(inputs.size() == 2);
    auto& x = inputs[0];
    auto& y = inputs[1];
    auto& out = outputs[0];

    // Each primitive carries the stream it should execute on
    // and each stream carries its device identifiers
    auto& s = stream();
    // We get the needed metal device using the stream
    auto& d = metal::device(s.device);

    // Allocate output memory
    out.set_data(allocator::malloc_or_wait(out.nbytes()));

    // Resolve name of kernel
    std::ostringstream kname;
    kname << "axpby_" << "general_" << type_to_name(out);

    // Make sure the metal library is available
    d.register_library("mlx_ext");

    // Make a kernel from this metal library
    auto kernel = d.get_kernel(kname.str(), "mlx_ext");

    // Prepare to encode kernel
    auto& compute_encoder = d.get_command_encoder(s.index);
    compute_encoder.set_compute_pipeline_state(kernel);

    // Kernel parameters are registered with buffer indices corresponding to
    // those in the kernel declaration at axpby.metal
    int ndim = out.ndim();
    size_t nelem = out.size();

    // Encode input arrays to kernel
    compute_encoder.set_input_array(x, 0);
    compute_encoder.set_input_array(y, 1);

    // Encode output arrays to kernel
    compute_encoder.set_output_array(out, 2);

    // Encode alpha and beta
    compute_encoder.set_bytes(alpha_, 3);
    compute_encoder.set_bytes(beta_, 4);

    // Encode shape, strides and ndim
    compute_encoder.set_vector_bytes(x.shape(), 5);
    compute_encoder.set_vector_bytes(x.strides(), 6);
    compute_encoder.set_bytes(y.strides(), 7);
    compute_encoder.set_bytes(ndim, 8);

    // We launch 1 thread for each input and make sure that the number of
    // threads in any given threadgroup is not higher than the max allowed
    size_t tgp_size = std::min(nelem, kernel->maxTotalThreadsPerThreadgroup());

    // Fix the 3D size of each threadgroup (in terms of threads)
    MTL::Size group_dims = MTL::Size(tgp_size, 1, 1);

    // Fix the 3D size of the launch grid (in terms of threads)
    MTL::Size grid_dims = MTL::Size(nelem, 1, 1);

    // Launch the grid with the given number of threads divided among
    // the given threadgroups
    compute_encoder.dispatch_threads(grid_dims, group_dims);
}

We can now call the axpby() operation on both the CPU and the GPU!

A few things to note about MLX and Metal before moving on. MLX keeps track of the active command_buffer and the MTLCommandBuffer to which it is associated. We rely on d.get_command_encoder() to give us the active metal compute command encoder instead of building a new one and calling compute_encoder->end_encoding() at the end. MLX adds kernels (compute pipelines) to the active command buffer until some specified limit is hit or the command buffer needs to be flushed for synchronization.

Primitive Transforms#

Next, let’s add implementations for transformations in a Primitive. These transformations can be built on top of other operations, including the one we just defined:

/** The Jacobian-vector product. */
std::vector<array> Axpby::jvp(
        const std::vector<array>& primals,
        const std::vector<array>& tangents,
        const std::vector<int>& argnums) {
    // Forward mode diff that pushes along the tangents
    // The jvp transform on the primitive can built with ops
    // that are scheduled on the same stream as the primitive

    // If argnums = {0}, we only push along x in which case the
    // jvp is just the tangent scaled by alpha
    // Similarly, if argnums = {1}, the jvp is just the tangent
    // scaled by beta
    if (argnums.size() > 1) {
        auto scale = argnums[0] == 0 ? alpha_ : beta_;
        auto scale_arr = array(scale, tangents[0].dtype());
        return {multiply(scale_arr, tangents[0], stream())};
    }
    // If, argnums = {0, 1}, we take contributions from both
    // which gives us jvp = tangent_x * alpha + tangent_y * beta
    else {
        return {axpby(tangents[0], tangents[1], alpha_, beta_, stream())};
    }
}
/** The vector-Jacobian product. */
std::vector<array> Axpby::vjp(
        const std::vector<array>& primals,
        const std::vector<array>& cotangents,
        const std::vector<int>& argnums,
        const std::vector<int>& /* unused */) {
    // Reverse mode diff
    std::vector<array> vjps;
    for (auto arg : argnums) {
        auto scale = arg == 0 ? alpha_ : beta_;
        auto scale_arr = array(scale, cotangents[0].dtype());
        vjps.push_back(multiply(scale_arr, cotangents[0], stream()));
    }
    return vjps;
}

Note, a transformation does not need to be fully defined to start using the Primitive.

/** Vectorize primitive along given axis */
std::pair<std::vector<array>, std::vector<int>> Axpby::vmap(
        const std::vector<array>& inputs,
        const std::vector<int>& axes) {
    throw std::runtime_error("[Axpby] vmap not implemented.");
}

Building and Binding#

Let’s look at the overall directory structure first.

extensions
├── axpby
│ ├── axpby.cpp
│ ├── axpby.h
│ └── axpby.metal
├── mlx_sample_extensions
│ └── __init__.py
├── bindings.cpp
├── CMakeLists.txt
└── setup.py
  • extensions/axpby/ defines the C++ extension library

  • extensions/mlx_sample_extensions sets out the structure for the associated Python package

  • extensions/bindings.cpp provides Python bindings for our operation

  • extensions/CMakeLists.txt holds CMake rules to build the library and Python bindings

  • extensions/setup.py holds the setuptools rules to build and install the Python package

Binding to Python#

We use nanobind to build a Python API for the C++ library. Since bindings for components such as mlx.core.array, mlx.core.stream, etc. are already provided, adding our axpby() is simple.

NB_MODULE(_ext, m) {
     m.doc() = "Sample extension for MLX";

     m.def(
         "axpby",
         &axpby,
         "x"_a,
         "y"_a,
         "alpha"_a,
         "beta"_a,
         nb::kw_only(),
         "stream"_a = nb::none(),
         R"(
             Scale and sum two vectors element-wise
             ``z = alpha * x + beta * y``

             Follows numpy style broadcasting between ``x`` and ``y``
             Inputs are upcasted to floats if needed

             Args:
                 x (array): Input array.
                 y (array): Input array.
                 alpha (float): Scaling factor for ``x``.
                 beta (float): Scaling factor for ``y``.

             Returns:
                 array: ``alpha * x + beta * y``
         )");
 }

Most of the complexity in the above example comes from additional bells and whistles such as the literal names and doc-strings.

Warning

mlx.core must be imported before importing mlx_sample_extensions as defined by the nanobind module above to ensure that the casters for mlx.core components like mlx.core.array are available.

Building with CMake#

Building the C++ extension library only requires that you find_package(MLX CONFIG) and then link it to your library.

# Add library
add_library(mlx_ext)

# Add sources
target_sources(
    mlx_ext
    PUBLIC
    ${CMAKE_CURRENT_LIST_DIR}/axpby/axpby.cpp
)

# Add include headers
target_include_directories(
    mlx_ext PUBLIC ${CMAKE_CURRENT_LIST_DIR}
)

# Link to mlx
target_link_libraries(mlx_ext PUBLIC mlx)

We also need to build the attached Metal library. For convenience, we provide a mlx_build_metallib() function that builds a .metallib target given sources, headers, destinations, etc. (defined in cmake/extension.cmake and automatically imported with MLX package).

Here is what that looks like in practice:

# Build metallib
if(MLX_BUILD_METAL)

mlx_build_metallib(
    TARGET mlx_ext_metallib
    TITLE mlx_ext
    SOURCES ${CMAKE_CURRENT_LIST_DIR}/axpby/axpby.metal
    INCLUDE_DIRS ${PROJECT_SOURCE_DIR} ${MLX_INCLUDE_DIRS}
    OUTPUT_DIRECTORY ${CMAKE_LIBRARY_OUTPUT_DIRECTORY}
)

add_dependencies(
    mlx_ext
    mlx_ext_metallib
)

endif()

Finally, we build the nanobind bindings

nanobind_add_module(
  _ext
  NB_STATIC STABLE_ABI LTO NOMINSIZE
  NB_DOMAIN mlx
  ${CMAKE_CURRENT_LIST_DIR}/bindings.cpp
)
target_link_libraries(_ext PRIVATE mlx_ext)

if(BUILD_SHARED_LIBS)
  target_link_options(_ext PRIVATE -Wl,-rpath,@loader_path)
endif()

Building with setuptools#

Once we have set out the CMake build rules as described above, we can use the build utilities defined in mlx.extension:

from mlx import extension
from setuptools import setup

if __name__ == "__main__":
    setup(
        name="mlx_sample_extensions",
        version="0.0.0",
        description="Sample C++ and Metal extensions for MLX primitives.",
        ext_modules=[extension.CMakeExtension("mlx_sample_extensions._ext")],
        cmdclass={"build_ext": extension.CMakeBuild},
        packages=["mlx_sample_extensions"],
        package_data={"mlx_sample_extensions": ["*.so", "*.dylib", "*.metallib"]},
        extras_require={"dev":[]},
        zip_safe=False,
        python_requires=">=3.8",
    )

Note

We treat extensions/mlx_sample_extensions as the package directory even though it only contains a __init__.py to ensure the following:

  • mlx.core must be imported before importing _ext

  • The C++ extension library and the metal library are co-located with the python bindings and copied together if the package is installed

To build the package, first install the build dependencies with pip install -r requirements.txt. You can then build inplace for development using python setup.py build_ext -j8 --inplace (in extensions/)

This results in the directory structure:

extensions
├── mlx_sample_extensions
│ ├── __init__.py
│ ├── libmlx_ext.dylib # C++ extension library
│ ├── mlx_ext.metallib # Metal library
│ └── _ext.cpython-3x-darwin.so # Python Binding

When you try to install using the command python -m pip install . (in extensions/), the package will be installed with the same structure as extensions/mlx_sample_extensions and the C++ and Metal library will be copied along with the Python binding since they are specified as package_data.

Usage#

After installing the extension as described above, you should be able to simply import the Python package and play with it as you would any other MLX operation.

Let’s look at a simple script and its results:

import mlx.core as mx
from mlx_sample_extensions import axpby

a = mx.ones((3, 4))
b = mx.ones((3, 4))
c = axpby(a, b, 4.0, 2.0, stream=mx.cpu)

print(f"c shape: {c.shape}")
print(f"c dtype: {c.dtype}")
print(f"c correct: {mx.all(c == 6.0).item()}")

Output:

c shape: [3, 4]
c dtype: float32
c correctness: True

Results#

Let’s run a quick benchmark and see how our new axpby operation compares with the naive simple_axpby() we first defined on the CPU.

import mlx.core as mx
from mlx_sample_extensions import axpby
import time

mx.set_default_device(mx.cpu)

def simple_axpby(x: mx.array, y: mx.array, alpha: float, beta: float) -> mx.array:
    return alpha * x + beta * y

M = 256
N = 512

x = mx.random.normal((M, N))
y = mx.random.normal((M, N))
alpha = 4.0
beta = 2.0

mx.eval(x, y)

def bench(f):
    # Warm up
    for i in range(100):
        z = f(x, y, alpha, beta)
        mx.eval(z)

    # Timed run
    s = time.time()
    for i in range(5000):
        z = f(x, y, alpha, beta)
        mx.eval(z)
    e = time.time()
    return e - s

simple_time = bench(simple_axpby)
custom_time = bench(axpby)

print(f"Simple axpby: {simple_time:.3f} s | Custom axpby: {custom_time:.3f} s")

The results are Simple axpby: 0.114 s | Custom axpby: 0.109 s. We see modest improvements right away!

This operation is now good to be used to build other operations, in mlx.nn.Module calls, and also as a part of graph transformations like grad().

Scripts#

Download the code

The full example code is available in mlx.