mlx.optimizers.Adamax#
- class Adamax(learning_rate: float | Callable[[array], array], betas: List[float] = [0.9, 0.999], eps: float = 1e-08)#
The Adamax optimizer, a variant of Adam based on the infinity norm [1].
Our Adam implementation follows the original paper and omits the bias correction in the first and second moment estimates. In detail,
[1]: Kingma, D.P. and Ba, J., 2015. Adam: A method for stochastic optimization. ICLR 2015.
\[\begin{split}m_{t+1} &= \beta_1 m_t + (1 - \beta_1) g_t \\ v_{t+1} &= \max(\beta_2 v_t, |g_t|) \\ w_{t+1} &= w_t - \lambda \frac{m_{t+1}}{v_{t+1} + \epsilon}\end{split}\]- Parameters:
learning_rate (float or callable) – The learning rate \(\lambda\).
betas (Tuple[float, float], optional) – The coefficients \((\beta_1, \beta_2)\) used for computing running averages of the gradient and its square. Default:
(0.9, 0.999)
eps (float, optional) – The term \(\epsilon\) added to the denominator to improve numerical stability. Default:
1e-8
Methods
__init__
(learning_rate[, betas, eps])apply_single
(gradient, parameter, state)Performs the Adamax parameter update and stores \(v\) and \(m\) in the optimizer state.
init_single
(parameter, state)Initialize optimizer state