mlx.optimizers.cosine_decay#

cosine_decay(init: float, decay_steps: int, end: float = 0.0) Callable#

Make a cosine decay scheduler.

Parameters:
  • init (float) – Initial value.

  • decay_steps (int) – Number of steps to decay over. The decayed value is constant for steps beyond decay_steps.

  • end (float, optional) – Final value to decay to. Default: 0.

Example

>>> lr_schedule = optim.cosine_decay(1e-1, 1000)
>>> optimizer = optim.SGD(learning_rate=lr_schedule)
>>> optimizer.learning_rate
array(0.1, dtype=float32)
>>>
>>> for _ in range(5): optimizer.update({}, {})
...
>>> optimizer.learning_rate
array(0.0999961, dtype=float32)