mlx.nn.init.he_uniform#
- he_uniform(dtype: Dtype = mlx.core.float32) Callable[[array, Literal['fan_in', 'fan_out'], float], array] #
A He uniform (Kaiming uniform) initializer.
This initializer samples from a uniform distribution with a range computed from the number of input (
fan_in
) or output (fan_out
) units according to:\[\sigma = \gamma \sqrt{\frac{3.0}{\text{fan}}}\]where \(\text{fan}\) is either the number of input units when the
mode
is"fan_in"
or output units when themode
is"fan_out"
.For more details see the original reference: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
- Parameters:
dtype (Dtype, optional) – The data type of the array. Default:
float32
.- Returns:
An initializer that returns an array with the same shape as the input, filled with samples from the He uniform distribution.
- Return type:
Example
>>> init_fn = nn.init.he_uniform() >>> init_fn(mx.zeros((2, 2))) # uses fan_in array([[0.0300242, -0.0184009], [0.793615, 0.666329]], dtype=float32) >>> init_fn(mx.zeros((2, 2)), mode="fan_out", gain=5) array([[-1.64331, -2.16506], [1.08619, 5.79854]], dtype=float32)