mlx.optimizers.RMSprop#
- class RMSprop(learning_rate: float | Callable[[array], array], alpha: float = 0.99, eps: float = 1e-08)#
The RMSprop optimizer [1].
[1]: Tieleman, T. and Hinton, G. 2012. Lecture 6.5-rmsprop, coursera: Neural networks for machine learning
\[\begin{split}v_{t+1} &= \alpha v_t + (1 - \alpha) g_t^2 \\ w_{t+1} &= w_t - \lambda \frac{g_t}{\sqrt{v_{t+1}} + \epsilon}\end{split}\]- Parameters:
Methods
__init__
(learning_rate[, alpha, eps])apply_single
(gradient, parameter, state)Performs the RMSprop parameter update and stores \(v\) in the optimizer state.
init_single
(parameter, state)Initialize optimizer state