mlx.nn.losses.cosine_similarity_loss#
- class cosine_similarity_loss(x1: array, x2: array, axis: int = 1, eps: float = 1e-08, reduction: Literal['none', 'mean', 'sum'] = 'none')#
Computes the cosine similarity between the two inputs.
The cosine similarity loss is given by
\[\frac{x_1 \cdot x_2}{\max(\|x_1\| \cdot \|x_2\|, \epsilon)}\]- Parameters:
x1 (mx.array) – The first set of inputs.
x2 (mx.array) – The second set of inputs.
axis (int, optional) – The embedding axis. Default:
1
.eps (float, optional) – The minimum value of the denominator used for numerical stability. Default:
1e-8
.reduction (str, optional) – Specifies the reduction to apply to the output:
'none'
|'mean'
|'sum'
. Default:'none'
.
- Returns:
The computed cosine similarity loss.
- Return type:
mx.array