mlx.nn.losses.gaussian_nll_loss#
- class gaussian_nll_loss(inputs: array, targets: array, vars: array, full: bool = False, eps: float = 1e-06, reduction: Literal['none', 'mean', 'sum'] = 'mean')#
- Computes the negative log likelihood loss for a Gaussian distribution. - The loss is given by: \[\frac{1}{2}\left(\log\left(\max\left(\text{vars}, \ \epsilon\right)\right) + \frac{\left(\text{inputs} - \text{targets} \right)^2} {\max\left(\text{vars}, \ \epsilon \right)}\right) + \text{const.}\]- where - inputsare the predicted means and- varsare the the predicted variances.- Parameters:
- inputs (array) – The predicted expectation of the Gaussian distribution. 
- targets (array) – The target values (samples from the Gaussian distribution). 
- vars (array) – The predicted variance of the Gaussian distribution. 
- full (bool, optional) – Whether to include the constant term in the loss calculation. Default: - False.
- eps (float, optional) – Small positive constant for numerical stability. Default: - 1e-6.
- reduction (str, optional) – Specifies the reduction to apply to the output: - 'none'|- 'mean'|- 'sum'. Default:- 'none'.
 
- Returns:
- The Gaussian NLL loss. 
- Return type:
 
