mlx.nn.losses.gaussian_nll_loss#
- class gaussian_nll_loss(inputs: array, targets: array, vars: array, full: bool = False, eps: float = 1e-06, reduction: Literal['none', 'mean', 'sum'] = 'mean')#
Computes the negative log likelihood loss for a Gaussian distribution.
The loss is given by:
\[\frac{1}{2}\left(\log\left(\max\left(\text{vars}, \ \epsilon\right)\right) + \frac{\left(\text{inputs} - \text{targets} \right)^2} {\max\left(\text{vars}, \ \epsilon \right)}\right) + \text{const.}\]where
inputsare the predicted means andvarsare the the predicted variances.- Parameters:
inputs (array) – The predicted expectation of the Gaussian distribution.
targets (array) – The target values (samples from the Gaussian distribution).
vars (array) – The predicted variance of the Gaussian distribution.
full (bool, optional) – Whether to include the constant term in the loss calculation. Default:
False.eps (float, optional) – Small positive constant for numerical stability. Default:
1e-6.reduction (str, optional) – Specifies the reduction to apply to the output:
'none'|'mean'|'sum'. Default:'none'.
- Returns:
The Gaussian NLL loss.
- Return type: