mlx.nn.Module.unfreeze#
- Module.unfreeze(*, recurse: bool = True, keys: str | List[str] | None = None, strict: bool = False) Module #
Unfreeze the Module’s parameters or some of them.
This function is idempotent ie unfreezing a model that is not frozen is a noop.
Example
For instance to only train the biases of a Transformer one can do:
model = nn.Transformer() model.freeze() model.unfreeze(keys="bias")
- Parameters:
recurse (bool, optional) – If True then unfreeze the parameters of the submodules as well. Default:
True
.keys (str or list[str], optional) – If provided then only these parameters will be unfrozen otherwise all the parameters of a module. For instance unfreeze all biases by calling
module.unfreeze(keys="bias")
.strict (bool, optional) – If set to
True
validate that the passed keys exist. Default:False
.
- Returns:
The module instance after unfreezing the parameters.