mlx.optimizers.Optimizer.init#
- Optimizer.init(parameters: dict)#
Initialize the optimizer’s state
This function can be used to initialize optimizers which have state (like momentum in
SGD
). Using this method is optional as the optimizer will initialize itself if the state is not yet set. However, there are some cases where explicit initialization is useful in order to have access to theOptimizer.state
before the first call toOptimizer.update()
.- Parameters:
model (dict) – A Python tree of parameters.
Example
>>> optimizer = optim.SGD(learning_rate=1e-1, momentum=0.9) >>> model = nn.Linear(2, 2) >>> optimizer.init(model.trainable_parameters()) >>> optimizer.state.keys() dict_keys(['step', 'learning_rate', 'weight', 'bias'])