mlx.nn.init.he_normal#

he_normal(dtype: Dtype = mlx.core.float32) Callable[[array, Literal['fan_in', 'fan_out'], float], array]#

Build a He normal initializer.

This initializer samples from a normal distribution with a standard deviation computed from the number of input (fan_in) or output (fan_out) units according to:

\[\sigma = \gamma \frac{1}{\sqrt{\text{fan}}}\]

where \(\text{fan}\) is either the number of input units when the mode is "fan_in" or output units when the mode is "fan_out".

For more details see the original reference: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification

Parameters:

dtype (Dtype, optional) – The data type of the array. Defaults to mx.float32.

Returns:

An initializer that returns an array with the same shape as the input, filled with samples from the He normal distribution.

Return type:

Callable[[array, str, float], array]

Example

>>> init_fn = nn.init.he_normal()
>>> init_fn(mx.zeros((2, 2)))  # uses fan_in
array([[-1.25211, 0.458835],
       [-0.177208, -0.0137595]], dtype=float32)
>>> init_fn(mx.zeros((2, 2)), mode="fan_out", gain=5)
array([[5.6967, 4.02765],
       [-4.15268, -2.75787]], dtype=float32)